Advertisement

Cerebrospinal fluid cytokines in multiple system atrophy: A cross-sectional Catalan MSA registry study

      Highlights

      • CSF levels of 12 cytokines were higher in MSA (n = 39) vs. PD + controls (n = 19 & 15).
      • Younger age and increasing CSF levels of MCP-3 and MDC were MSA predictors in adjusted models.
      • CSF levels of fractalkine and MIP-1α correlated with UMSARS-2 scores.
      • CSF levels of these cytokines might be diagnostic or severity MSA biomarkers.

      Abstract

      Introduction

      Neuroinflammation is a potential player in neurodegenerative conditions, particularly the aggressive ones, such as multiple system atrophy (MSA). Previous reports on cytokine levels in MSA using serum or cerebrospinal fluid (CSF) have been inconsistent, including small samples and a limited number of cytokines, often without comparison to Parkinson's disease (PD), a main MSA differential diagnosis.

      Methods

      Cross-sectional study of CSF levels of 38 cytokines using a multiplex assay in 73 participants: 39 MSA patients (19 with parkinsonian type [MSAp], 20 with cerebellar type [MSAc]; 31 probable, 8 possible), 19 PD patients and 15 neurologically unimpaired controls. None of the participants was under non-steroidal anti-inflammatory drugs at the time of the lumbar puncture.

      Results

      There were not significant differences in sex and age among participants. In global non-parametric comparisons FDR-corrected for multiple comparisons, CSF levels of 5 cytokines (FGF-2, IL-10, MCP-3, IL-12p40, MDC) differed among the three groups. In pair-wise FDR-corrected non-parametric comparisons 12 cytokines (FGF-2, eotaxin, fractalkine, IFN-α2, IL-10, MCP-3, IL-12p40, MDC, IL-17, IL-7, MIP-1β, TNF-α) were significantly higher in MSA vs. non-MSA cases (PD + controls pooled together). Of these, MCP-3 and MDC were the most significant ones, also differed in MSA vs. PD, and were significant MSA-predictors in binary logistic regression models and ROC curves adjusted for age. CSF levels of fractalkine and MIP-1α showed a strong and significant positive correlation with UMSARS-2 scores.

      Conclusion

      Increased CSF levels of cytokines such as MCP-3, MDC, fractalkine and MIP-1α deserve consideration as potential diagnostic or severity biomarkers of MSA.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Parkinsonism & Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fanciulli A.
        • Wenning G.K.
        Multiple-system atrophy.
        N. Engl. J. Med. 2015; 372: 249-263
        • Mollenhauer B.
        • Locascio J.J.
        • Schulz-Schaeffer W.
        • Sixel-Döring F.
        • Trenkwalder C.
        • Schlossmacher M.G.
        α-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study.
        Lancet Neurol. 2011; 10: 230-240
        • Shahnawaz M.
        • Tokuda T.
        • Waragai M M.
        • Mendez N.
        • Ishii R.
        • Trenkwalder C.
        • et al.
        Development of a biochemical diagnosis of Parkinson disease by detection of α-synuclein misfolded aggregates in cerebrospinal fluid.
        JAMA Neurol. 2017; 74: 163-172
        • Hansson O.
        • Janelidze S.
        • Hall S.
        • Magdalinou N.
        • Lees A.J.
        • Andreasson U.
        • et al.
        Blood-based NfL: a biomarker for differential diagnosis of parkinsonian disorder.
        Neurology. 2017; 74: 930-937
        • Hu X.
        • Yang Y.
        • Gong D.
        Cerebrospinal fluid levels of neurofilament light chain in multiple system atrophy relative to Parkinson's disease: a meta-analysis.
        Neurol. Sci. 2017; 38: 407-414
        • Kasai T.
        • Tokuda T.
        • Ohmichi T.
        • Ishii R.
        • Tatebe H.
        • Nakagawa M.
        • Mizuno T.
        Serum levels of coenzyme Q10 in patients with multiple system Atrophy.
        PLoS One. 2016; 11: e0147574
        • Mitsui J.
        • Matsukawa T.
        • Yasuda T.
        • Ishiura H.
        • Tsuji S.
        Plasma coenzyme Q10 levels in patients with multiple system atrophy.
        JAMA Neurol. 2016; 73: 977-980
        • Compta Y.
        • Giraldo D.M.
        • Muñoz E.
        • Antonelli F.
        • Fernández M.
        • Bravo P.
        • Catalan
        • et al.
        • MSA Registry (CMSAR)
        Cerebrospinal fluid levels of coenzyme Q10 are reduced in multiple system atrophy.
        Park. Relat. Disord. 2018; 46: 16-23
        • Brodacki B.
        • Staszewski J.
        • Toczyłowska B.
        • Kozłowska E.
        • Drela N.
        • Chalimoniuk M.
        • Stepien A.
        Serum interleukin (IL-2, IL-10, IL-6, IL-4), TNFalpha, and INFgamma concentrations are elevated in patients with atypical and idiopathic parkinsonism.
        Neurosci. Lett. 2008; 441: 158-162
        • Kaufman E.
        • Hall S.
        • Surova Y.
        • Widner H.
        • Hansson O.
        • Lindqvist D.
        Proinflammatory cytokines are elevated in serum of patients with multiple system atrophy.
        PLoS One. 2013; 8: e62354
        • Yamasaki R.
        • Yamaguchi H.
        • Matsushita T.
        • Fujii T.
        • Hiwatashi A.
        • Kira J.I.
        Early strong intrathecal inflammation in cerebellar type multiple system atrophy by cerebrospinal fluid cytokine/chemokine profiles: a case control study.
        J. Neuroinflammation. 2017; 14: 89
        • Gilman S.
        • Wenning G.K.
        • Low P.A.
        • Brooks D.J.
        • Mathias C.J.
        • Trojanowski J.Q.
        • et al.
        Second consensus statement on the diagnosis of multiple system atrophy.
        Neurology. 2008; 71: 670-676
        • Compta Y.
        • Martí M.J.
        • Ibarretxe-Bilbao N.
        • Junqué C.
        • Valldeoriola F.
        • Muñoz E.
        • et al.
        Cerebrospinal tau, phospho-tau, and beta-amyloid and neuropsychological functions in Parkinson's disease.
        Mov. Disord. 2009; 24: 2203-2210
        • Wenning G.K.
        • Tison F.
        • Seppi K.
        • Sampaio C.
        • Diem A.
        • Yekhlef F.
        • et al.
        Multiple system Atrophy study group. Development and validation of the unified multiple system Atrophy rating Scale (UMSARS).
        Mov. Disord. 2004; 19: 1391-1402
        • Fahn S.
        • Elton R.L.
        Members of the UPDRS development committee, unified Parkinson's disease rating Scale.
        in: Fahn S. Marsden C.D. Calne D.B. Lieberman A. Recent Developments in Parkinson's Disease. McMillan Health Care Information, Florham Park, NJ1987: 153-163
        • Hoehn M.M.
        • Yahr M.D.
        • Parkinsonism M.D.
        onset, progression, and mortality Parkinsonism: onset, progression, and mortality.
        Neurology. 1967; 17: 427-442
        • Wenzelburger R.
        • Zhang B.R.
        • Pohle S.
        • Klebe S.
        • Lorenz D.
        • Herzog J.
        • et al.
        Force overflow and levodopa-induced dyskinesias in Parkinson's disease.
        Brain. 2002; 125: 871-879
        • Benjamini Y.
        • Hochberg Y.
        Controlling the false discovery rate: a practical and powerful approach to multiple testing.
        J. R. Stat. Soc. Ser. B. 1995; 57: 289-300
        • Stefanova N.
        • Reindl M.
        • Neumann M.
        • Kahle P.J.
        • Poewe W.
        • Wenning G.K.
        Microglial activation mediates neurodegeneration related to oligodendroglial alpha-synucleinopathy: implications for multiple system atrophy.
        Mov. Disord. 2007; 22: 2196-2203
        • Edman L.C.
        • Mira H.
        • Arenas E.
        The beta-chemokines CCL2 and CCL7 are two novel differentiation factors for midbrain dopaminergic precursors and neurons.
        Exp. Cell Res. 2008; 314: 2123-2130
        • Dogan R.-N.E.
        • Long N.
        • Forde E.
        • Dennis K.
        • Kohm A.P.
        • Miller S.D.
        • Karpus W.J.
        CCL22 regulates experimental autoimmune encephalomyelitis by controlling inflammatory macrophage accumulation and effector function.
        J. Leukoc. Biol. 2011; 89: 93-104
        • Lobo-Silva D.
        • Carriche G.M.
        • Castro A.G.
        • Roque S.
        • Saraiva M.
        Balancing the immune response in the brain: IL-10 and its regulation.
        J. Neuroinflammation. 2016; 13: 297
        • Rentzos M.
        • Nikolaou C.
        • Andreadou E.
        • Paraskevas G.P.
        • Rombos A.
        • Zoga M.
        • et al.
        Circulating interleukin-10 and interleukin-12 in Parkinson's disease.
        Acta Neurol. Scand. 2009; 119: 332-337
        • Vila N.
        • Castillo J.
        • Dávalos A.
        • Esteve A.
        • Planas A.M.
        • Chamorro Á.
        Levels of anti-inflammatory cytokines and neurological worsening in acute ischemic stroke.
        Stroke. 2003; 34: 671-675
        • Rideout H.J.
        • Dietrich P.
        • Savalle M.
        • Dauer W.T.
        • Stefanis L.
        Regulation of alpha-synuclein by bFGF in cultured ventral midbrain dopaminergic neurons.
        J. Neurochem. 2003; 84: 803-813
        • Shults C.W.
        • Ray J.
        • Tsuboi K.
        • Gage F.H.
        Fibroblast growth factor-2-producing fibroblasts protect the nigrostriatal dopaminergic system from 6-hydroxydopamine.
        Brain Res. 2000; 883: 192-204
        • Yilmaz R R.
        • Strafella A.P.
        • Bernard A.
        • Schulte C.
        • van den Heuvel L.
        • Schneiderhan-Marra N.
        • Knorpp T.
        • Joos T.O.
        • Leypoldt F.
        • Geritz J.
        • Hansen C.
        • Heinzel S.
        • Apel A.
        • Gasser T.
        • Lang A.E.
        • Berg D.
        • Maetzler W.
        • Marras C.
        Serum inflammatory profile for the discrimination of clinical subtypes in Parkinson's disease.
        Front. Neurol. 2018; 9: 1123
        • Lauro C.
        • Catalano M.
        • Trettel F.
        • Limatola C.
        Fractalkine in the nervous system: neuroprotective or neurotoxic molecule?.
        Ann. N. Y. Acad. Sci. 2015; 1351: 141-148
        • Cardona A.E.
        • Pioro E.P.
        • Sasse M.E.
        • Kostenko V.
        • Cardona S.M.
        • Dijkstra I.M.
        • et al.
        Control of microglial neurotoxicity by the fractalkine receptor.
        Nat. Neurosci. 2006; 9: 917-924
        • Morganti J.M.
        • Nash K.R.
        • Grimmig B.A.
        • Ranjit S.
        • Small B.
        • Bickford P.C.
        • Gemma C.
        The soluble isoform of CX3CL1 is necessary for neuroprotection in a mouse model of Parkinson's disease.
        J. Neurosci. 2012; 32: 14592-14601
        • Pabon M.M.
        • Bachstetter A.D.
        • Hudson C.E.
        • Gemma C.
        • Bickford P.C.
        CX3CL1 reduces neurotoxicity and microglial activation in a rat model of Parkinson's disease.
        J. Neuroinflammation. 2011; 8: 9
        • Shi M.
        • Bradner J.
        • Hancock A.M.
        • Chung K.A.
        • Quinn J.F.
        • Peskind E.R.
        • et al.
        Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression.
        Ann. Neurol. 2011; 69: 570-580
        • Herbert M.K.
        • Aerts M.B.
        • Beenes M M.
        • Norgren N.
        • Esselink R.A.
        • Bloem B.R.
        • et al.
        CSF neurofilament light chain but not FLT3 ligand discriminates parkinsonian disorders.
        Front. Neurol. 2015; 6: 91
        • Silajdžić E.
        • Constantinescu R.
        • Holmberg B.
        • Björkqvist M.
        • Hansson O.
        Flt3 ligand does not differentiate between Parkinsonian disorders.
        Mov. Disord. 2014; 29: 1319-1322
        • Refolo V.
        • Bez F.
        • Polissidis A.
        • Kuzdas-Wood D.
        • Sturm E.
        • Kamaratou M.
        • Poewe W.
        • Stefanis L.
        • Angela Cenci M.
        • Romero-Ramos M.
        • Wenning G.K.
        • Stefanova N.
        Progressive striatonigral degeneration in a transgenic mouse model of multiple system atrophy: translational implications for interventional therapies.
        Acta Neuropathol. Commun. 2018; 6: 2