Advertisement

Non-invasive brain stimulation to treat cognitive symptoms of Parkinson's disease

  • Irena Rektorova
    Correspondence
    Corresponding author. Applied Neuroscience Research Group, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic.
    Affiliations
    First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
    Applied Neuroscience Research Group, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic
    Search for articles by this author
  • Roberta Biundo
    Affiliations
    Parkinson's Disease and Movement Disorders Unit, IRCCS San Camillo Hospital, Venice, Italy
    Search for articles by this author
Published:September 14, 2019DOI:https://doi.org/10.1016/j.parkreldis.2019.09.012
      Transcranial non-invasive brain stimulation (NIBS) techniques include particularly repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), although other non-invasive stimulation techniques have also been employed. The rTMS uses a rapidly changing magnetic field to induce currents and action potentials in underlying brain tissue. The tDCS involves the application of weak (1–2mA) electrical currents to modulate neuronal membrane potential. Although the precise mechanisms of NIBS aftereffects have not been fully elucidated, rTMS has been shown to modulate several neurotransmitter systems, increase neurotrophic factors, and induce changes on neuronal synapses by long-term potentiation (LTP) and long-term depression (LTD)-like mechanisms (for review, see Rektorova and Anderkova 2017) [
      • Rektorová I.
      • Anderková Ľ.
      Noninvasive brain stimulation and implications for nonmotor symptoms in Parkinson's disease.
      ]. LTD-like mechanisms also apply for the underpinnings of tDCS [
      • Flöel A.
      tDCS-enhanced motor and cognitive function in neurological diseases.
      ]. The aftereffects of NIBS depend on the stimulation protocols and on the precise coil/electrode placement as well as on the current “state” of the brain [
      • Anderkova L.
      • Eliasova I.
      • Marecek R.
      • Janousova E.
      • Rektorova I.
      Distinct pattern of gray matter atrophy in mild Alzheimer's disease impacts on cognitive outcomes of noninvasive brain stimulation.
      ,
      • Bergmann T.O.
      • Karabanov A.
      • Hartwigsen G.
      • Thielscher A.
      • Siebner H.R.
      Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives.
      ]. Both rTMS and tDCS can be used to excite (high-frequency rTMS, anodal tDCS) or inhibit (low-frequency rTMS, cathodal tDCS) the underlying cortical tissue; the evidence pertains to NIBS applied over the motor cortex, but it may vary when the NIBS is targeted to sites other than motor cortices (e.g. L. Brabenec et al., 2015) [
      • Brabenec L.
      • Klobusiakova P.
      • Barton M.
      • Mekyska J.
      • Galaz Z.
      • Zvoncak V.
      • Kiska T.
      • Mucha J.
      • Smekal Z.
      • Kostalova M.
      • Rektorova I.
      Non-invasive stimulation of the auditory feedback area for improved articulation in Parkinson's disease.
      ].
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Parkinsonism & Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rektorová I.
        • Anderková Ľ.
        Noninvasive brain stimulation and implications for nonmotor symptoms in Parkinson's disease.
        Int. Rev. Neurobiol. 2017; 134: 1091-1110
        • Flöel A.
        tDCS-enhanced motor and cognitive function in neurological diseases.
        Neuroimage. 2014; 85: 934-947
        • Anderkova L.
        • Eliasova I.
        • Marecek R.
        • Janousova E.
        • Rektorova I.
        Distinct pattern of gray matter atrophy in mild Alzheimer's disease impacts on cognitive outcomes of noninvasive brain stimulation.
        J. Alzheimer's Dis. 2015; 48: 251-260
        • Bergmann T.O.
        • Karabanov A.
        • Hartwigsen G.
        • Thielscher A.
        • Siebner H.R.
        Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives.
        NeuroImage. 2016; 140: 4-19
        • Brabenec L.
        • Klobusiakova P.
        • Barton M.
        • Mekyska J.
        • Galaz Z.
        • Zvoncak V.
        • Kiska T.
        • Mucha J.
        • Smekal Z.
        • Kostalova M.
        • Rektorova I.
        Non-invasive stimulation of the auditory feedback area for improved articulation in Parkinson's disease.
        Park. Relat. Disord. 2019; 61: 187-192
        • Biundo R.
        • Fiorenzato E.
        • Antonini A.
        Nonmotor symptoms and natural history of Parkinson's disease: evidence from cognitive dysfunction and role of noninvasive interventions.
        Int. Rev. Neurobiol. 2017; 133: 389-415
        • Priori A.
        • Hallett M.
        • Rothwell J.C.
        Repetitive transcranial magnetic stimulation or transcranial direct current stimulation?.
        Brain Stimulat. 2009; 2: 241-245
        • Latorre A.
        • Rocchi L.
        • Berardelli A.
        • Bhatia K.P.
        • Rothwell J.C.
        The interindividual variability of transcranial magnetic stimulation effects: implications for diagnostic use in movement disorders.
        Mov. Disord. 2019; 34: 936-949
        • George M.S.
        • Lisanby S.H.
        • Avery D.
        • McDonald W.M.
        • Durkalski V.
        • Pavlicova M.
        • Anderson B.
        • Nahas Z.
        • Bulow P.
        • Zarkowski P.
        • 3rd Holtzheimer P.E.
        • Schwartz T.
        • Sackeim H.A.
        Daily left prefrontal transcranial magnetic stimulation therapy for major depressive disorder: a sham-controlled randomized trial.
        Arch. Gen. Psychiatr. 2010; 67: 507-516
        • Trung J.
        • Hanganu A.
        • Jobert S.
        • Degroot C.
        • Mejia-Constain B.
        • Kibreab M.
        • Bruneau M.A.
        • Lafontaine A.L.
        • Strafella A.
        • Monchi O.
        Transcranial magnetic stimulation improves cognition over time in Parkinson's disease.
        Parkinsonism Relat. Disord. 2019; (Epub ahead of print, Jul 8)https://doi.org/10.1016/j.parkreldis.2019.07.006
        • Ko J.H.
        • Monchi O.
        • Ptito A.
        • Bloomfield P.
        • Houle S.
        • Strafella A.P.
        Theta burst stimulation-induced inhibition of dorsolateral prefrontal cortex reveals hemispheric asymmetry in striatal dopamine release during a set-shifting task—a TMS–[11C] raclopride PET study.
        Eur. J. Neurosci. 2010; 28: 2147-2155
        • Gratton C.
        • Lee T.G.
        • Nomura E.M.
        • D'Esposito M.
        The effect of theta-burst TMS on cognitive control networks measured with resting state fMRI.
        Front. Syst. Neurosci. 2013; 7: 124
        • Anderkova L.
        • Pizem D.
        • Klobusiakova P.
        • Gajdos M.
        • Koritakova E.
        • Rektorova I.
        Theta burst stimulation enhances connectivity of the dorsal attention network in young healthy subjects: an exploratory study.
        Neural Plast. 2018; 13: 3106918
        • Huang Y.Z.
        • Edwards M.J.
        • Rounis E.
        • Bhatia K.P.
        • Rothwell J.C.
        Theta burst stimulation of the human motor cortex.
        Neuron. 2005; 45: 201-206
        • Nagano-Saito A.
        • Habak C.
        • Mejía-Constaín B.
        • Degroot C.
        • Monetta L.
        • Jubault T.
        • Bedetti C.
        • Lafontaine A.L.
        • Chouinard S.
        • Soland V.
        Effect of mild cognitive impairment on the patterns of neural activity in early Parkinson's disease.
        Neurobiol. Aging. 2014; 35: 223-231
        • Guerra A.
        • López-Alonso V.
        • Cheeran B.
        • Suppa A.
        Solutions for managing variability in non-invasive brain stimulation studies.
        Neurosci. Lett. 2017; 30: 133332
        • Jannati A.
        • Fried P.J.
        • Block G.
        • Oberman L.M.
        • Rotenberg A.
        • Pascual-Leone A.
        Test-retest reliability of the effects of continuous theta-burst stimulation.
        Front. Neurosci. 2018; 13: 447
        • Nguyen J.P.
        • Suarez A.
        • Le Saout E.
        • Meignier M.
        • Nizard J.
        • Lefaucheur J.P.
        Combining cognitive training and multi-site rTMS to improve cognitive functions in Alzheimer's disease.
        Brain Stimul. 2018; 11: 651-652
        • Biundo R.
        • Weis L.
        • Fiorenzato E.
        • Gentile G.
        • Giglio M.
        • Schifano R.
        • Campo M.C.
        • Marcon V.
        • Martinez-Martin P.
        • Bisiacchi P.
        • Antonini A.
        Double blind randomized trial of tDCS versus sham in Parkinson patients with mild cognitive impairment receiving cognitive training.
        Brain Stimul. 2015; 8: 1223-1225
        • Baileya N.W.
        • Hoya K.E.
        • Rogaschb N.C.
        • Thomsona R.H.
        • McQueena S.
        • Elliota D.
        • Sullivana C.M.
        • Fulcherb B.D.
        • Daskalakisc Z.J.
        • Fitzgeralda P.B.
        Differentiating responders and non-responders to rTMS treatment for depression after one week using resting EEG connectivity measures.
        J. Affect. Disord. 2019; 242: 68-79
        • Fiorenzato E.
        • Biundo R.
        • Cecchin D.
        • Frigo A.C.
        • Kim J.
        • Weis L.
        • Strafella A.P.
        • Antonini A.
        Brain amyloid contribution to cognitive dysfunction in early-stage Parkinson's disease: the PPMI dataset.
        J. Alzheimer's Dis. 2018; 66: 229-237
        • Sverak T.
        • Albrechtova L.
        • Lamos M.
        • Rektorova I.
        • Ustohal L.
        Intensive repetitive transcranial magnetic stimulation changes EEG microstates in schizophrenia: a pilot study.
        Schizophr. Res. 2018; 193: 451-452
        • Brys M.
        • Fox M.D.
        • Agarwal S.
        • Biagioni M.
        • Dacpano G.
        • Kumar P.
        • Pirraglia E.
        • Chen R.
        • Wu A.
        • Fernandez H.
        • Wagle Shukla A.
        • Lou J.S.
        • Gray Z.
        • Simon D.K.
        • Di Rocco A.
        • Pascual-Leone A.
        Multifocal repetitive TMS for motor and mood symptoms of Parkinson disease: a randomized trial.
        Neurology. 2016; 87: 1907-1915
        • Udupa K.
        • Bahl N.
        • Ni Z.
        • Gunraj C.
        • Mazzella F.
        • Moro E.
        • Hodaie M.
        • Lozano A.M.
        • Lang A.E.
        • Chen R.
        Cortical plasticity induction by pairing subthalamic nucleus deep-brain stimulation and primary motor cortical transcranial magnetic stimulation in Parkinson's disease.
        J. Neurosci. 2016; 36: 396-404
        • Lawrence B.J.
        • Gasson N.
        • Bucks R.S.
        • Troeung L.
        • Loftus A.M.
        Cognitive training and noninvasive brain stimulation for cognition in Parkinson's disease: a meta-analysis.
        Neurorehabilitation Neural Repair. 2017; 31: 597-608
        • Manenti R.
        • Brambilla M.
        • Benussi A.
        • Rosini S.
        • Cobelli C.
        • Ferrari C.
        • Petesi M.
        • Orizio I.
        • Padovani A.
        • Borroni B.
        • Cotelli M.
        Mild cognitive impairment in Parkinson's disease is improved by transcranial direct current stimulation combined with physical therapy.
        Mov. Disord. 2016; 31: 715-724