Advertisement

Challenges in the approach and reporting of atypical manifestations of membrane protein-associated neurodegeneration (MPAN): An editorial

  • Philippe A. Salles
    Correspondence
    Movement Disorders Section, Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
    Affiliations
    Movement Disorders Section, Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA

    Centro de Trastornos Del Movimiento CETRAM, Santiago, Chile
    Search for articles by this author
      Since the beginning of our careers, we have been trained with efficient algorithms for common diseases. In specialized clinics we often find ourselves outside this comfort zone, when facing cases with atypical manifestations and/or rare disorders.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Parkinsonism & Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Behr C.
        Die komplizierte, hereditaer-familiaere Optikusatrophie des Kindesalters: ein bisher nicht beschriebener Symptomenkomplex.
        Klin. Monatsbl. Augenheilkd. 1909; 47: 138-160
        • Carelli V.
        • Sabatelli M.
        • Carrozzo R.
        • Rizza T.
        • Schimpf S.
        • Wissinger B.
        • Zanna C.
        • Rugolo M.
        • la Morgia C.
        • Caporali L.
        • Carbonelli M.
        • Barboni P.
        • Tonon C.
        • Lodi R.
        • Bertini E.
        ‘Behr syndrome’ with OPA1 compound heterozygote mutations.
        Brain. 2015; 138 (e321–e321)https://doi.org/10.1093/brain/awu234
        • McMacken G.
        • Lochmüller H.
        • Bansagi B.
        • Pyle A.
        • Lochmüller A.
        • Chinnery P.F.
        • Laurie S.
        • Beltran S.
        • Matalonga L.
        • Horvath R.
        Behr syndrome and hypertrophic cardiomyopathy in a family with a novel UCHL1 deletion.
        J. Neurol. 2020; 267: 3643-3649https://doi.org/10.1007/s00415-020-10059-3
        • de Bot S.T.
        • Willemsen M.A.A.P.
        • Vermeer S.
        • Kremer H.P.H.
        • van de Warrenburg B.P.C.
        Reviewing the genetic causes of spastic-ataxias.
        Neurology. 2012; 79: 1507-1514https://doi.org/10.1212/WNL.0b013e31826d5fb0
        • de Freitas J.L.
        • Rezende Filho F.M.
        • Sallum J.M.F.
        • França M.C.
        • Pedroso J.L.
        • Barsottini O.G.P.
        Ophthalmological changes in hereditary spastic paraplegia and other genetic diseases with spastic paraplegia.
        J. Neurol. Sci. 2020; 409: 116620https://doi.org/10.1016/j.jns.2019.116620
        • Landouré G.
        • Zhu P.-P.
        • Lourenço C.M.
        • Johnson J.O.
        • Toro C.
        • Bricceno K.v.
        • Rinaldi C.
        • Meilleur K.G.
        • Sangaré M.
        • Diallo O.
        • Pierson T.M.
        • Ishiura H.
        • Tsuji S.
        • Hein N.
        • Fink J.K.
        • Stoll M.
        • Nicholson G.
        • Gonzalez M.A.
        • Speziani F.
        • Dürr A.
        • Stevanin G.
        • Biesecker L.G.
        • Accardi J.
        • Landis D.M.D.
        • Gahl W.A.
        • Traynor B.J.
        • Marques W.
        • Züchner S.
        • Blackstone C.
        • Fischbeck K.H.
        • Burnett B.G.
        Hereditary spastic paraplegia type 43 (SPG43) is caused by mutation in C19orf12.
        Hum. Mutat. 2013; 34: 1357-1360https://doi.org/10.1002/humu.22378
        • Lehéricy S.
        • Roze E.
        • Goizet C.
        • Mochel F.
        MRI of neurodegeneration with brain iron accumulation.
        Curr. Opin. Neurol. 2020; 33: 462-473https://doi.org/10.1097/WCO.0000000000000844
        • Salomão R.P.A.
        • Pedroso J.L.
        • Gama M.T.D.
        • Dutra L.A.
        • Maciel R.H.
        • Godeiro-Junior C.
        • Chien H.F.
        • Teive H.A.G.
        • Cardoso F.
        • Barsottini O.G.P.
        A diagnostic approach for neurodegeneration with brain iron accumulation: clinical features, genetics and brain imaging.
        Arq. Neuro. Psiquiatr. 2016; 74: 587-596https://doi.org/10.1590/0004-282X20160080
        • Hogarth P.
        • Gregory A.
        • Kruer M.C.
        • Sanford L.
        • Wagoner W.
        • Natowicz M.R.
        • Egel R.T.
        • Subramony S.H.
        • Goldman J.G.
        • Berry-Kravis E.
        • Foulds N.C.
        • Hammans S.R.
        • Desguerre I.
        • Rodriguez D.
        • Wilson C.
        • Diedrich A.
        • Green S.
        • Tran H.
        • Reese L.
        • Woltjer R.L.
        • Hayflick S.J.
        New NBIA subtype: genetic, clinical, pathologic, and radiographic features of MPAN.
        Neurology. 2013; 80: 268-275https://doi.org/10.1212/WNL.0b013e31827e07be
        • Hartig M.B.
        • Iuso A.
        • Haack T.
        • Kmiec T.
        • Jurkiewicz E.
        • Heim K.
        • Roeber S.
        • Tarabin V.
        • Dusi S.
        • Krajewska-Walasek M.
        • Jozwiak S.
        • Hempel M.
        • Winkelmann J.
        • Elstner M.
        • Oexle K.
        • Klopstock T.
        • Mueller-Felber W.
        • Gasser T.
        • Trenkwalder C.
        • Tiranti V.
        • Kretzschmar H.
        • Schmitz G.
        • Strom T.M.
        • Meitinger T.
        • Prokisch H.
        Absence of an orphan mitochondrial protein, C19orf12, causes a distinct clinical subtype of neurodegeneration with brain iron accumulation.
        Am. J. Hum. Genet. 2011; 89: 543-550https://doi.org/10.1016/j.ajhg.2011.09.007
        • Tariq H.
        • Butt J. ur R.
        • Houlden H.
        • Naz S.
        Are some C19orf12 variants monoallelic for neurological disorders?.
        Park. Relat. Disord. 2019; 65: 267-269https://doi.org/10.1016/j.parkreldis.2019.05.020
        • Gregory A.
        • Lotia M.
        • Jeong S.Y.
        • Fox R.
        • Zhen D.
        • Sanford L.
        • Hamada J.
        • Jahic A.
        • Beetz C.
        • Freed A.
        • Kurian M.A.
        • Cullup T.
        • Weijden M.C.M.
        • Nguyen V.
        • Setthavongsack N.
        • Garcia D.
        • Krajbich V.
        • Pham T.
        • Woltjer R.
        • George B.P.
        • Minks K.Q.
        • Paciorkowski A.R.
        • Hogarth P.
        • Jankovic J.
        • Hayflick S.J.
        Autosomal dominant mitochondrial membrane protein‐associated neurodegeneration (MPAN).
        Mol. Genet. & Genom. Me. 2019; 7https://doi.org/10.1002/mgg3.736
        • Ramesh Rithvik
        • et al.
        C19orf12 mutation causing mitochondrial membrane-protein Associated Neurodegeneration masquerading as spastic paraplegia.
        Parkinsonism & Related Disorders. 2021; 89 (In this issue): 146-147https://doi.org/10.1016/j.parkreldis.2021.07.014
        • Finsterer J.
        C19orf12 mutation carriers and their first-degree relatives require prospective clinical and genetic work-up.
        Parkinsonism & Related Disorders. 2021; 89 (In this issue): 118-119https://doi.org/10.1016/j.parkreldis.2021.07.015