Advertisement

Physical activity intensity is associated with cognition and functional connectivity in Parkinson's disease

Published:September 23, 2022DOI:https://doi.org/10.1016/j.parkreldis.2022.09.005

      Highlights

      • Moderate intensity physical activity (MIPA) is associated with better cognition.
      • 150 min MIPA (World Health Organization recommendation) is associated with better cognition.
      • Physical activity moderated the relationship between functional connectivity and cognition.

      Abstract

      Background

      Cognitive impairment is common in Parkinson's disease (PD) and often leads to dementia, with no effective treatment. Aging studies suggest that physical activity (PA) intensity has a positive impact on cognition and enhanced functional connectivity may underlie these benefits. However, less is known in PD. This cross-sectional study examined the relationship between PA intensity, cognitive performance, and resting state functional connectivity in PD and whether PA intensity influences the relationship between functional connectivity and cognitive performance.

      Methods

      96 individuals with mild-moderate PD completed a comprehensive neuropsychological battery. Intensity of PA was objectively captured over a seven-day period using a wearable device (ActiGraph). Time spent in light and moderate intensity PA was determined based on standardized actigraphy cut points. Resting-state fMRI was assessed in a subset of 50 individuals to examine brain-wide functional connectivity.

      Results

      Moderate intensity PA (MIPA), but not light PA, was associated with better global cognition, visuospatial function, memory, and executive function. Individuals who met the WHO recommendation of ≥150 min/week of MIPA demonstrated better global cognition, executive function, and visuospatial function. Resting-state functional connectivity associated with MIPA included a combination of brainstem, hippocampus, and regions in the frontal, cingulate, and parietal cortices, which showed higher connectivity across the brain in those achieving the WHO MIPA recommendation. Meeting this recommendation positively moderated the associations between identified functional connectivity and global cognition, visuospatial function, and language.

      Conclusion

      Encouraging MIPA, particularly the WHO recommendation of ≥150 min of MIPA/week, may represent an important prescription for PD cognition.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Parkinsonism & Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aarsland D.
        • Creese B.
        • Politis M.
        • Chaudhuri K.R.
        • Ffytche D.H.
        • Weintraub D.
        • Ballard C.
        Cognitive decline in Parkinson disease.
        Nat. Rev. Neurol. 2017; 13: 217-231https://doi.org/10.1038/nrneurol.2017.27
        • Lawson R.A.
        • Yarnall A.J.
        • Duncan G.W.
        • Khoo T.K.
        • Breen D.P.
        • Barker R.A.
        • Collerton D.
        • Taylor J.P.
        • Burn D.J.
        Severity of mild cognitive impairment in early Parkinson's disease contributes to poorer quality of life.
        Park. Relat. Disord. 2014; 20: 1071-1075https://doi.org/10.1016/j.parkreldis.2014.07.004
        • Hassan M.
        • Chaton L.
        • Benquet P.
        • Delval A.
        • Leroy C.
        • Plomhause L.
        • Moonen A.J.H.
        • Duits A.A.
        • Leentjens A.F.G.
        • van Kranen-Mastenbroek V.
        • Defebvre L.
        • Derambure P.
        • Wendling F.
        • Dujardin K.
        Functional connectivity disruptions correlate with cognitive phenotypes in Parkinson's disease.
        NeuroImage Clin. 2017; 14: 591-601https://doi.org/10.1016/j.nicl.2017.03.002
        • Kirk-Sanchez N.J.
        • McGough E.L.
        Physical exercise and cognitive performance in the elderly: current perspectives.
        Clin. Interv. Aging. 2014; 9: 51-62https://doi.org/10.2147/CIA.S39506
        • Herold F.
        • Törpel A.
        • Schega L.
        • Müller N.G.
        Functional and/or structural brain changes in response to resistance exercises and resistance training lead to cognitive improvements - a systematic review.
        Eur. Rev. Aging Phys. Act. Off. J. Eur. Group Res. Elder. Phys. Act. 2019; 16: 10https://doi.org/10.1186/s11556-019-0217-2
        • Gogniat M.A.
        • Mewborn C.M.
        • Robinson T.L.
        • Jean K.R.
        • Miller L.S.
        The relations between physical activity level, executive function, and white matter microstructure in older adults.
        J. Phys. Activ. Health. 2021; 18: 1286-1298https://doi.org/10.1123/jpah.2021-0012
        • Smith J.C.
        • Nielson K.A.
        • Woodard J.L.
        • Seidenberg M.
        • Durgerian S.
        • Antuono P.
        • Butts A.M.
        • Hantke N.C.
        • Lancaster M.A.
        • Rao S.M.
        Interactive effects of physical activity and APOE-ε4 on BOLD semantic memory activation in healthy elders.
        Neuroimage. 2011; 54: 635-644https://doi.org/10.1016/j.neuroimage.2010.07.070
        • Thivel D.
        • Tremblay A.
        • Genin P.M.
        • Panahi S.
        • Rivière D.
        • Duclos M.
        Physical activity, inactivity, and sedentary behaviors: definitions and implications in occupational health.
        Front. Public Health. 2018; 6: 288https://doi.org/10.3389/fpubh.2018.00288
        • Zlatar Z.Z.
        • Godbole S.
        • Takemoto M.
        • Crist K.
        • Sweet C.M.C.
        • Kerr J.
        • Rosenberg D.E.
        Changes in moderate intensity physical activity are associated with better cognition in the multilevel intervention for physical activity in retirement communities (MIPARC) study.
        Am. J. Geriatr. Psychiatr. 2019; 27: 1110-1121https://doi.org/10.1016/j.jagp.2019.04.011
        • Makizako H.
        • Liu-Ambrose T.
        • Shimada H.
        • Doi T.
        • Park H.
        • Tsutsumimoto K.
        • Uemura K.
        • Suzuki T.
        Moderate-intensity physical activity, hippocampal volume, and memory in older adults with mild cognitive impairment.
        J. Gerontol. Ser. A. 2015; 70: 480-486https://doi.org/10.1093/gerona/glu136
        • World Health Organization
        WHO Guidelines on Physical Activity and Sedentary Behaviour.
        World Health Organization, 2020
        • Loprinzi P.D.
        • Danzl M.M.
        • Ulanowski E.
        • Paydo C.
        A pilot study evaluating the association between physical activity and cognition among individuals with Parkinson's disease.
        Disabil. Health J. 2018; 11: 165-168https://doi.org/10.1016/j.dhjo.2017.05.004
        • Hughes A.J.
        • Daniel S.E.
        • Kilford L.
        • Lees A.J.
        Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases.
        J. Neurol. Neurosurg. Psychiatry. 1992; 55: 181-184https://doi.org/10.1136/jnnp.55.3.181
        • Parkinson’s Disease Measurement
        PwP, surveys, trials, analysis.
        • Heil D.P.
        • Brage S.
        • Rothney M.P.
        Modeling physical activity outcomes from wearable monitors.
        Med. Sci. Sports Exerc. 2012; 44: S50-S60https://doi.org/10.1249/MSS.0b013e3182399dcc
        • Matthews C.E.
        • Hagströmer M.
        • Pober D.M.
        • Bowles H.R.
        Best practices for using physical activity monitors in population-based research.
        Med. Sci. Sports Exerc. 2012; 44: S68-S76https://doi.org/10.1249/MSS.0b013e3182399e5b
        • Choi L.
        • Liu Z.
        • Matthews C.E.
        • Buchowski M.S.
        Validation of accelerometer wear and nonwear time classification algorithm.
        Med. Sci. Sports Exerc. 2011; 43: 357-364https://doi.org/10.1249/MSS.0b013e3181ed61a3
        • Freedson P.
        • Bowles H.R.
        • Troiano R.
        • Haskell W.
        Assessment of physical activity using wearable monitors: recommendations for monitor calibration and use in the field.
        Med. Sci. Sports Exerc. 2012; 44: S1-S4https://doi.org/10.1249/MSS.0b013e3182399b7e
        • CDC
        Move More; Sit Less, Cent. Dis. Control Prev. 2022;
        • Angevaren M.
        • Vanhees L.
        • Wendel-Vos W.
        • Verhaar H.J.J.
        • Aufdemkampe G.
        • Aleman A.
        • Verschuren W.M.M.
        Intensity, but not duration, of physical activities is related to cognitive function.
        Eur. J. Cardiovasc. Prev. Rehabil. Off. J. Eur. Soc. Cardiol. Work. Groups Epidemiol. Prev. Card. Rehabil. Exerc. Physiol. 2007; 14: 825-830https://doi.org/10.1097/HJR.0b013e3282ef995b
        • Destrieux C.
        • Fischl B.
        • Dale A.
        • Halgren E.
        Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature.
        Neuroimage. 2010; 53: 1-15https://doi.org/10.1016/j.neuroimage.2010.06.010
        • Fischl B.
        • Salat D.H.
        • Busa E.
        • Albert M.
        • Dieterich M.
        • Haselgrove C.
        • van der Kouwe A.
        • Killiany R.
        • Kennedy D.
        • Klaveness S.
        • Montillo A.
        • Makris N.
        • Rosen B.
        • Dale A.M.
        Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain.
        Neuron. 2002; 33: 341-355https://doi.org/10.1016/s0896-6273(02)00569-x
        • Irimia A.
        • Van Horn J.D.
        Systematic network lesioning reveals the core white matter scaffold of the human brain.
        Front. Hum. Neurosci. 2014; 8: 51https://doi.org/10.3389/fnhum.2014.00051
        • Irimia A.
        • Chambers M.C.
        • Torgerson C.M.
        • Van Horn J.D.
        Circular representation of human cortical networks for subject and population-level connectomic visualization.
        Neuroimage. 2012; 60: 1340-1351https://doi.org/10.1016/j.neuroimage.2012.01.107
        • Abraham A.
        • Pedregosa F.
        • Eickenberg M.
        • Gervais P.
        • Mueller A.
        • Kossaifi J.
        • Gramfort A.
        • Thirion B.
        • Varoquaux G.
        Machine learning for neuroimaging with scikit-learn.
        Front. Neuroinf. 2014; 8: 2825-2830https://doi.org/10.3389/fninf.2014.00014
        • Welch P.
        The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms.
        IEEE Trans. Audio Electroacoust. 1967; 15: 70-73https://doi.org/10.1109/TAU.1967.1161901
        • Mitra A.
        • Snyder A.Z.
        • Hacker C.D.
        • Raichle M.E.
        Lag structure in resting-state fMRI.
        J. Neurophysiol. 2014; 111: 2374-2391https://doi.org/10.1152/jn.00804.2013
        • Vo A.
        • Sako W.
        • Fujita K.
        • Peng S.
        • Mattis P.J.
        • Skidmore F.M.
        • Ma Y.
        • Uluğ A.M.
        • Eidelberg D.
        Parkinson's disease-related network topographies characterized with resting state functional MRI.
        Hum. Brain Mapp. 2017; 38: 617-630https://doi.org/10.1002/hbm.23260
        • Robinson C.D.
        • Tomek S.
        • Schumacker R.E.
        Tests of moderation effects: difference in simple slopes versus the interaction.
        Term. 2013; 39: 9
        • Seabold S.
        • Perktold J.
        Statsmodels: Econometric and Statistical Modeling with Python.
        Austin, Texas2010: 92-96https://doi.org/10.25080/Majora-92bf1922-011
        • Fang X.
        • Han D.
        • Cheng Q.
        • Zhang P.
        • Zhao C.
        • Min J.
        • Wang F.
        Association of levels of physical activity with risk of Parkinson disease: a systematic review and meta-analysis.
        JAMA Netw. Open. 2018; 1e182421https://doi.org/10.1001/jamanetworkopen.2018.2421
        • Erickson K.I.
        • Hillman C.
        • Stillman C.M.
        • Ballard R.M.
        • Bloodgood B.
        • Conroy D.E.
        • Macko R.
        • Marquez D.X.
        • Petruzzello S.J.
        • Powell K.E.
        FOR 2018 physical activity guidelines advisory committee*, physical activity, cognition, and brain outcomes: a review of the 2018 physical activity guidelines.
        Med. Sci. Sports Exerc. 2019; 51: 1242-1251https://doi.org/10.1249/MSS.0000000000001936
        • Menai M.
        • van Hees V.T.
        • Elbaz A.
        • Kivimaki M.
        • Singh-Manoux A.
        • Sabia S.
        Accelerometer assessed moderate-to-vigorous physical activity and successful ageing: results from the Whitehall II study.
        Sci. Rep. 2017; 845772https://doi.org/10.1038/srep45772
        • Uc E.Y.
        • Doerschug K.C.
        • Magnotta V.
        • Dawson J.D.
        • Thomsen T.R.
        • Kline J.N.
        • Rizzo M.
        • Newman S.R.
        • Mehta S.
        • Grabowski T.J.
        • Bruss J.
        • Blanchette D.R.
        • Anderson S.W.
        • Voss M.W.
        • Kramer A.F.
        • Darling W.G.
        Phase I/II randomized trial of aerobic exercise in Parkinson disease in a community setting.
        Neurology. 2014; 83: 413-425https://doi.org/10.1212/WNL.0000000000000644
        • MacIntosh B.R.
        • Murias J.M.
        • Keir D.A.
        • Weir J.M.
        What is moderate to vigorous exercise intensity?.
        Front. Physiol. 2021; 12682233https://doi.org/10.3389/fphys.2021.682233
        • Santiago J.A.
        • Quinn J.P.
        • Potashkin J.A.
        Physical activity rewires the human brain against neurodegeneration.
        Int. J. Mol. Sci. 2022; 23: 6223https://doi.org/10.3390/ijms23116223
        • Toy W.A.
        • Petzinger G.M.
        • Leyshon B.J.
        • Akopian G.K.
        • Walsh J.P.
        • Hoffman M.V.
        • Vučković M.G.
        • Jakowec M.W.
        Treadmill exercise reverses dendritic spine loss in direct and indirect striatal medium spiny neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease.
        Neurobiol. Dis. 2014; 63: 201-209https://doi.org/10.1016/j.nbd.2013.11.017