Advertisement

Serial olfactory testing for the diagnosis of prodromal Parkinson's disease in the PARS study

Published:September 16, 2022DOI:https://doi.org/10.1016/j.parkreldis.2022.09.007

      Highlights

      • Hyposmia, impaired sense of smell, is associated with increased risk of Parkinson's disease.
      • By itself, smell testing is sensitive, but lacks specificity.
      • Repeating smell testing is a simple and cost-effective way to improve this screening tool.

      Abstract

      Background

      The Parkinson Associated Risk Syndrome (PARS) study was designed to evaluate whether screening with olfactory testing and dopamine transporter (DAT) imaging could identify participants at risk for developing Parkinson's disease (PD).

      Objective

      Hyposmia on a single test has been associated with increased risk of PD, but, taken alone, lacks specificity. We evaluated whether repeating olfactory testing improves the diagnostic characteristics of this screening approach.

      Methods

      Participants completed up to 10 years of clinical and imaging evaluations in the PARS cohort. Olfaction was assessed with the University of Pennsylvania Smell Identification Test at baseline and on average 1.4 years later. Multiple logistic regression and Cox proportional hazards regression were used to estimate the hazard of development of clinical PD or abnormal DAT imaging.

      Results

      Of 186 participants who were initially hyposmic, 28% reverted to normosmia on repeat testing (reverters). No initially normosmic subjects and only 2% of reverters developed DAT imaging progression or clinical PD, compared to 29% of subjects with persistent hyposmia who developed abnormal DAT and 20% who developed clinical PD. The relative risk of clinical conversion to PD was 8.3 (95% CI:0.92–75.2, p = 0.06) and of abnormal DAT scan was 12.5 (2.4–156.2, p = 0.005) for persistent hyposmia, compared to reversion.

      Conclusions

      Persistent hyposmia on serial olfactory testing significantly increases the risk of developing clinical PD and abnormal DAT imaging, compared to hyposmia on a single test. Repeat olfactory testing may be an efficient and cost-effective strategy to improve identification of at-risk patients for early diagnosis and disease modification studies.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Parkinsonism & Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Marras C.
        • Beck J.C.
        • Bower J.H.
        • Roberts E.
        • Ritz B.
        • Ross G.W.
        • Abbott R.D.
        • Savica R.
        • Van Den Eeden S.K.
        • Willis A.W.
        • Tanner C.
        Prevalence of Parkinson's disease across North America.
        Npj Park. Dis. 2018; 4: 1-7https://doi.org/10.1038/s41531-018-0058-0
        • Ray Dorsey E.
        • Elbaz A.
        • Nichols E.
        • Abd-Allah F.
        • Abdelalim A.
        • Adsuar J.C.
        • Ansha M.G.
        • Brayne C.
        • Choi J.Y.J.
        • Collado-Mateo D.
        • Dahodwala N.
        • Do H.P.
        • Edessa D.
        • Endres M.
        • Fereshtehnejad S.M.
        • Foreman K.J.
        • Gankpe F.G.
        • Gupta R.
        • Hankey G.J.
        • Hay S.I.
        • Hegazy M.I.
        • Hibstu D.T.
        • Kasaeian A.
        • Khader Y.
        • Khalil I.
        • Khang Y.H.
        • Kim Y.J.
        • Kokubo Y.
        • Logroscino G.
        • Massano J.
        • Ibrahim N.M.
        • Mohammed M.A.
        • Mohammadi A.
        • Moradi-Lakeh M.
        • Naghavi M.
        • Nguyen B.T.
        • Nirayo Y.L.
        • Ogbo F.A.
        • Owolabi M.O.
        • Pereira D.M.
        • Postma M.J.
        • Qorbani M.
        • Rahman M.A.
        • Roba K.T.
        • Safari H.
        • Safiri S.
        • Satpathy M.
        • Sawhney M.
        • Shafieesabet A.
        • Shiferaw M.S.
        • Smith M.
        • Szoeke C.E.I.
        • Tabarés-Seisdedos R.
        • Truong N.T.
        • Ukwaja K.N.
        • Venketasubramanian N.
        • Villafaina S.
        • Weldegwergs K.G.
        • Westerman R.
        • Wijeratne T.
        • Winkler A.S.
        • Xuan B.T.
        • Yonemoto N.
        • Feigin V.L.
        • Vos T.
        • Murray C.J.L.
        Global, regional, and national burden of Parkinson's disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016.
        Lancet Neurol. 2018; 17: 939-953https://doi.org/10.1016/S1474-4422(18)30295-3
        • Hung A.Y.
        • Schwarzschild M.A.
        Approaches to disease modification for Parkinson's disease: clinical trials and lessons learned.
        Neurotherapeutics. 2020; 17: 1393-1405https://doi.org/10.1007/s13311-020-00964-w
        • Kordower J.H.
        • Olanow C.W.
        • Dodiya H.B.
        • Chu Y.
        • Beach T.G.
        • Adler C.H.
        • Halliday G.M.
        • Bartus R.T.
        Disease duration and the integrity of the nigrostriatal system in Parkinson's disease.
        Brain. 2013; 136: 2419-2431https://doi.org/10.1093/brain/awt192
        • Siderowf A.
        • Jennings D.
        • Stern M.
        • Seibyl J.
        • Eberly S.
        • Oakes D.
        • Marek K.
        • Jennings D.
        • Marek K.
        • Seibyl J.
        • Siderowf A.
        • Stern M.
        • Russell D.
        • Sethi K.
        • Frank S.
        • Simuni T.
        • Hauser R.
        • Ravina B.
        • Richards I.
        • Liang G.
        • Adler C.
        • Saunders-Pullman R.
        • Evatt M.L.
        • Lai E.
        • Subramanian I.
        • Hogarth P.
        • Chung K.
        Clinical and imaging progression in the PARS cohort: long-term follow-up.
        Mov. Disord. 2020; 35: 1550-1557https://doi.org/10.1002/mds.28139
        • Berg D.
        • Postuma R.B.
        • Adler C.H.
        • Bloem B.R.
        • Chan P.
        • Dubois B.
        • Gasser T.
        • Goetz C.G.
        • Halliday G.
        • Joseph L.
        • Lang A.E.
        • Liepelt-Scarfone I.
        • Litvan I.
        • Marek K.
        • Obeso J.
        • Oertel W.
        • Olanow C.W.
        • Poewe W.
        • Stern M.
        • Deuschl G.
        MDS research criteria for prodromal Parkinson's disease.
        Mov. Disord. 2015; 30: 1600-1611https://doi.org/10.1002/mds.26431
        • Heinzel S.
        • Berg D.
        • Gasser T.
        • Chen H.
        • Yao C.
        • Postuma R.B.
        Update of the MDS research criteria for prodromal Parkinson's disease.
        Mov. Disord. 2019; 34: 1464-1470https://doi.org/10.1002/mds.27802
        • Doty R.L.
        • Deems D.A.
        • Stellar S.
        Olfactory dysfunction in parkinsonism: a general deficit unrelated to neurologic signs, disease stage, or disease duration.
        Neurology. 1988; 38: 1237-1244https://doi.org/10.1212/wnl.38.8.1237
        • McKinnon J.
        • Evidente V.
        • Driver-Dunckley E.
        • Premkumar A.
        • Hentz J.
        • Shill H.
        • Sabbagh M.
        • Caviness J.
        • Connor D.
        • Adler C.
        Olfaction in the elderly: a cross-sectional analysis comparing Parkinson's disease with controls and other disorders.
        Int. J. Neurosci. 2010; 120: 36-39https://doi.org/10.3109/00207450903428954
        • Double K.L.
        • Rowe D.B.
        • Hayes M.
        • Chan D.K.Y.
        • Blackie J.
        • Corbett A.
        • Joffe R.
        • Fung V.S.
        • Morris J.
        • Halliday G.M.
        Identifying the pattern of olfactory deficits in Parkinson disease using the brief smell identification test.
        Arch. Neurol. 2003; 60: 545-549https://doi.org/10.1001/archneur.60.4.545
        • Ponsen M.M.
        • Stoffers D.
        • Booij J.
        • Van Eck-Smit B.L.F.
        • Wolters E.C.
        • Berendse H.W.
        Idiopathic hyposmia as a preclinical sign of Parkinson's disease.
        Ann. Neurol. 2004; 56: 173-181https://doi.org/10.1002/ana.20160
        • Boesveldt S.
        • Verbaan D.
        • Knol D.L.
        • Visser M.
        • van Rooden S.M.
        • van Hilten J.J.
        • Berendse H.W.
        A comparative study of odor identification and odor discrimination deficits in Parkinson's disease.
        Mov. Disord. 2008; 23 (1984–1990)https://doi.org/10.1002/mds.22155
        • Haehner A.
        • Boesveldt S.
        • Berendse H.W.
        • Mackay-Sim A.
        • Fleischmann J.
        • Silburn P.A.
        • Johnston A.N.
        • Mellick G.D.
        • Herting B.
        • Reichmann H.
        • Hummel T.
        Prevalence of smell loss in Parkinson's disease - a multicenter study.
        Park. Relat. Disord. 2009; 15: 490-494https://doi.org/10.1016/j.parkreldis.2008.12.005
        • Haehner A.
        • Hummel T.
        • Hummel C.
        • Sommer U.
        • Junghanns S.
        • Reichmann H.
        Olfactory loss may be a first sign of idiopathic Parkinson's disease.
        Mov. Disord. 2007; 22: 839-842https://doi.org/10.1002/mds.21413
        • Ross G.W.
        • Petrovitch H.
        • Abbott R.D.
        • Tanner C.M.
        • Popper J.
        • Masaki K.
        • Launer L.
        • White L.R.
        Association of olfactory dysfunction with risk for future Parkinson's disease.
        Ann. Neurol. 2008; 63: 167-173https://doi.org/10.1002/ana.21291
        • Braak H.
        • Del Tredici K.
        • Rüb U.
        • De Vos R.A.I.
        • Jansen Steur E.N.H.
        • Braak E.
        Staging of brain pathology related to sporadic Parkinson's disease.
        Neurobiol. Aging. 2003; 24: 197-211https://doi.org/10.1016/S0197-4580(02)00065-9
        • Ubeda-Banon I.
        • Saiz-Sanchez D.
        • de la Rosa-Prieto C.
        • Martinez-Marcos A.
        a-Synuclein in the olfactory system in Parkinson's disease: role of neural connections on spreading pathology.
        Brain Strcut Funct. 2013; 219: 1513-1526
        • Fullard M.E.
        • Morley J.F.
        • Duda J.E.
        Olfactory dysfunction as an early biomarker in Parkinson's disease.
        Neurosci. Bull. 2017; 33: 515-525https://doi.org/10.1007/s12264-017-0170-x
        • Morley J.F.
        • Duda J.E.
        Olfaction as a biomarker in Parkinsons disease.
        Biomarkers Med. 2010; 4: 661-670https://doi.org/10.2217/bmm.10.95
        • Ross G.W.
        • Abbott R.D.
        • Petrovitch H.
        • Tanner C.M.
        • White L.R.
        Pre-motor features of Parkinson's disease: the Honolulu-Asia Aging study experience.
        Park. Relat. Disord. 2012; 18 (–S202): S199https://doi.org/10.1016/s1353-8020(11)70062-1
        • Jennings D.
        • Siderowf A.
        • Stern M.
        • Seibyl J.
        • Eberly S.
        • Oakes D.
        • Marek K.
        Conversion to Parkinson disease in the PARS hyposmic and dopamine transporter-deficit prodromal cohort.
        JAMA Neurol. 2017; 74: 933-940https://doi.org/10.1001/jamaneurol.2017.0985
        • Printza A.
        • Katotomichelakis M.
        • Valsamidis K.
        • Metallidis S.
        • Panagopoulos P.
        • Panopoulou M.
        • Petrakis V.
        • Constantinidis J.
        Smell and taste loss recovery time in COVID-19 patients and disease severity.
        J. Clin. Med. 2021; 10: 966https://doi.org/10.3390/jcm10050966
        • Parente-Arias P.
        • Barreira-Fernandez P.
        • Quintana-Sanjuas A.
        • Patiño-Castiñeira B.
        Recovery rate and factors associated with smell and taste disruption in patients with coronavirus disease 2019.
        Am. J. Otolaryngol. 2020; 42102648https://doi.org/10.1016/j.amjoto.2020.102648
        • Doty R.L.
        • Newhouse M.G.
        • Azzalina J.D.
        Internal consistency and short-term test-retest reliability of the university of Pennsylvania smell identification test.
        Chem. Senses. 1985; 10: 297-300
        • Morley J.F.
        • Cohen A.
        • Silveira-Moriyama L.
        • Lees A.J.
        • Williams D.R.
        • Katzenschlager R.
        • Hawkes C.
        • Shtraks J.P.
        • Weintraub D.
        • Doty R.L.
        • Duda J.E.
        Optimizing olfactory testing for the diagnosis of Parkinson's disease: item analysis of the university of Pennsylvania smell identification test.
        Npj Park. Dis. 2018; 4https://doi.org/10.1038/s41531-017-0039-8
        • Bohnen N.I.
        • Gedela S.
        • Kuwabara H.
        • Constantine G.M.
        • Mathis C.A.
        • Studenski S.A.
        • Moore R.Y.
        Selective hyposmia and nigrostriatal dopaminergic denervation in Parkinson's disease.
        J. Neurol. 2007; 254: 84-90https://doi.org/10.1007/s00415-006-0284-y
        • Joseph T.
        • Auger S.D.
        • Peress L.
        • Rack D.
        • Cuzick J.
        • Giovannoni G.
        • Lees A.
        • Schrag A.E.
        • Noyce A.J.
        Screening performance of abbreviated versions of the UPSIT smell test.
        J. Neurol. 2019; 266: 1897-1906https://doi.org/10.1007/s00415-019-09340-x
        • Hawkes C.
        • Shephard B.C.
        • Daniel S.E.
        Olfactory dysfunction in Parkinson disease.
        J. Neurol. Neurosurg. Psychiatry. 1997; 62: 436-446
        • Siderowf A.
        • Jennings D.
        • Eberly S.
        • Oakes D.
        • Hawkins K.A.
        • Ascherio A.
        • Stern M.B.
        • Marek K.
        • Russell D.
        • Fiocco A.
        • Cotto C.
        • Sethi K.
        • Jackson P.
        • Frank S.
        • Hohler A.
        • Thomas C.A.
        • James R.C.
        • Simuni T.
        • Borushko E.
        • Stern M.
        • Rick J.
        • Hauser R.
        • Khavarian L.
        • McClain T.
        • Richard I.
        • Deely C.
        • Liang G.S.
        • Reys L.
        • Adler C.H.
        • Duffy A.K.
        • Saunders-Pullman R.
        • Evatt M.L.
        • McGinn L.
        • Lai E.
        • Johnson S.
        • Atassi F.
        • DeBakey M.E.
        • Subramanian I.
        • Gratiano A.
        • Chung K.
        • Lobb B.
        • O'Conner S.
        • Albelo M.R.
        • Cioffi C.
        • Gadoury A.
        • Howard B.
        • Iannucci V.
        • Lasch S.
        • Mendick S.
        • Miles D.
        • Miles K.
        • Virden E.
        • Wisniewski G.
        Impaired olfaction and other prodromal features in the Parkinson At-Risk Syndrome study.
        Mov. Disord. 2012; 27: 406-412https://doi.org/10.1002/mds.24892
        • Jennings D.
        • Siderowf A.
        • Stern M.
        • Seibyl J.
        • Eberly S.
        • Oakes D.
        • Marek K.
        PARS investigators, imaging prodromal Parkinson disease: the Parkinson associated risk Syndrome study.
        Neurology. 2014; 83: 1739-1746https://doi.org/10.1212/WNL.0000000000000960
        • Fereshtehnejad S.-M.
        • Yao C.
        • Pelletier A.
        • Montplaisir J.Y.
        • Gagnon J.-F.
        • Postuma R.B.
        Evolution of prodromal Parkinson's disease and dementia with Lewy bodies: a prospective study.
        Brain. 2019; 142: 2051-2067https://doi.org/10.1093/brain/awz111
        • Konstantinidis I.
        • Tsakiropoulou E.
        • Bekiaridou P.
        • Kazantzidou C.
        • Constantinidis J.
        Use of olfactory training in post-traumatic and postinfectious olfactory dysfunction.
        Laryngoscope. 2013; 123: 85-90https://doi.org/10.1002/lary.24390
        • Damm M.
        • Pikart L.K.
        • Reimann H.
        • Burkert S.
        • Göktas Ö.
        • Haxel B.
        • Frey S.
        • Charalampakis I.
        • Beule A.
        • Renner B.
        • Hummel T.
        • Hüttenbrink K.B.
        Olfactory training is helpful in postinfectious olfactory loss: a randomized, controlled, multicenter study.
        Laryngoscope. 2014; 124: 826-831https://doi.org/10.1002/lary.24340
        • Agyeman A.A.
        • Chin K.L.
        • Landersdorfer C.B.
        • Liew D.
        • Ofori-Asenso R.
        Smell and taste dysfunction in patients with COVID-19: a systematic review and meta-analysis.
        Mayo Clin. Proc. 2020; 95: 1621-1631https://doi.org/10.1016/j.mayocp.2020.05.030
        • Bianco M.R.
        • Ralli M.
        • Minni A.
        • Greco A.
        • Vincentiis M.D.E.
        • Allegra E.
        Evaluation of Olfactory Dysfunction Persistence after COVID-19 : a Prospective Study.
        20192022: 1042-1048