Advertisement

Free Water Fraction Predicts Cognitive Decline for Individuals with Idiopathic Parkinson's disease

      Highlights

      • Free water fraction (FWF) is a metric of microstructural integrity.
      • FWF in cognitive ROIs reliably categorizes individuals with Parkinson's disease.
      • Individuals with higher FWF display lower executive function and memory.
      • High FWF at baseline predicts cognitive decline in multiple domains over two years.

      Abstract

      Introduction

      Free water fraction (FWF) is considered a metric of microstructural integrity and may be useful in predicting cognitive decline in idiopathic Parkinson's Disease (PD). We sought to determine if higher FWF within the dorsal portion of the caudate nucleus and basal nucleus of Meynert, two regions associated with cognitive decline in PD, predict change in cognition over a two-year span. Due to the existence of cognitive and neurophysiological subgroups within PD, we statistically categorized participants based on FWF in these regions.

      Methods

      At baseline, participants completed a research cognitive protocol followed by MRI structural and diffusion metrics. We used k-means cluster analysis with average FWF values from bilateral basal nucleus of Meynert and dorsal caudate to create data-driven FWF clusters for baseline. Two-year reliable change indices were calculated for metrics of language, visuospatial, memory, cognitive flexibility, and reasoning domains. Reliable change scores were compared between the clusters and non-PD peers.

      Results

      Baseline participants included 174 participants (112 PD, 62 non-PD). Cluster analysis yielded three clusters: low FWF in both regions of interest (ROIs), high FWF in both ROIs, and moderate FWF in both ROIs. Reliable change analyses were completed on 93 participants (67 PD, 26 non-PD). After controlling for age and education, the High FWF cluster declined more than non-PD peers in every domain except memory.

      Conclusion

      Individuals with high FWF in regions associated with cognitive decline in PD show significant decline across several cognitive domains compared to non-PD peers. Future research should include FWF in additional cortical regions.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Parkinsonism & Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Goldman J.G.
        • Holden S.
        • Bernard B.
        • Ouyang B.
        • Goetz C.G.
        • Stebbins G.T.
        Defining optimal cutoff scores for cognitive impairment using Movement Disorder Society Task Force criteria for mild cognitive impairment in Parkinson's disease.
        Mov. Disord. 2013; 28: 1972-1979
        • Weintraub D.
        • Simuni T.
        • Caspell-Garcia C.
        • Coffey C.
        • Lasch S.
        • Siderowf A.
        • Aarsland D.
        • Barone P.
        • Burn D.
        • Chahine L.M.
        • Eberling J.
        • Espay A.J.
        • Foster E.D.
        • Leverenz J.B.
        • Litvan I.
        • Richard I.
        • Troyer M.D.
        • Hawkins K.A.
        I. Parkinson's Progression Markers, Cognitive performance and neuropsychiatric symptoms in early, untreated Parkinson's disease.
        Mov. Disord. 2015; 30: 919-927
        • Mak E.
        • Su L.
        • Williams G.B.
        • O'Brien J.T.
        Neuroimaging correlates of cognitive impairment and dementia in Parkinson's disease.
        Park. Relat. Disord. 2015; 21: 862-870
        • Pasternak O.
        • Sochen N.
        • Gur Y.
        • Intrator N.
        • Assaf Y.
        Free water elimination and mapping from diffusion MRI.
        Magn. Reson. Med. 2009; 62: 717-730
        • Ofori E.
        • Pasternak O.
        • Planetta P.J.
        • Li H.
        • Burciu R.G.
        • Snyder A.F.
        • Lai S.
        • Okun M.S.
        • Vaillancourt D.E.
        Longitudinal changes in free-water within the substantia nigra of Parkinson's disease.
        Brain. 2015; 138: 2322-2331
        • Planetta P.J.
        • Ofori E.
        • Pasternak O.
        • Burciu R.G.
        • Shukla P.
        • DeSimone J.C.
        • Okun M.S.
        • McFarland N.R.
        • Vaillancourt D.E.
        Free-water imaging in Parkinson's disease and atypical parkinsonism.
        Brain. 2016; 139: 495-508
        • Melzer T.R.
        • Watts R.
        • MacAskill M.R.
        • Pitcher T.L.
        • Livingston L.
        • Keenan R.J.
        • Dalrymple-Alford J.C.
        • Anderson T.J.
        Grey matter atrophy in cognitively impaired Parkinson's disease.
        J. Neurol. Neurosurg. Psychiatry. 2012; 83: 188-194
        • Foo H.
        • Mak E.
        • Yong T.T.
        • Wen M.C.
        • Chander R.J.
        • Au W.L.
        • Sitoh Y.Y.
        • Tan L.C.
        • Kandiah N.
        Progression of subcortical atrophy in mild Parkinson's disease and its impact on cognition.
        Eur. J. Neurol. 2017; 24: 341-348
        • Kish S.J.
        • Shannak K.
        • Hornykiewicz O.
        Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications.
        N. Engl. J. Med. 1988; 318: 876-880
        • Bohnen N.I.
        • Albin R.L.
        • Muller M.L.
        • Petrou M.
        • Kotagal V.
        • Koeppe R.A.
        • Scott P.J.
        • Frey K.A.
        Frequency of cholinergic and caudate nucleus dopaminergic deficits across the predemented cognitive spectrum of Parkinson disease and evidence of interaction effects.
        JAMA Neurol. 2015; 72: 194-200
        • Schulz J.
        • Pagano G.
        • Fernandez Bonfante J.A.
        • Wilson H.
        • Politis M.
        Nucleus basalis of Meynert degeneration precedes and predicts cognitive impairment in Parkinson's disease.
        Brain. 2018; 141: 1501-1516
        • Crowley S.J.
        • Banan G.
        • Amin M.
        • Tanner J.J.
        • Hizel L.
        • Nguyen P.
        • Brumback B.
        • Rodriguez K.
        • McFarland N.
        • Bowers D.
        • Ding M.
        • Mareci T.A.
        • Price C.C.
        Statistically defined Parkinson’s disease executive and memory cognitive phenotypes: demographic, behavioral, and structural neuroimaging comparisons.
        J. Parkinsons Dis. 2020; 11: 283-297
        • Lezak M.D.
        Neuropsychological Assessment.
        fifth ed. Oxford University Press, Oxford ; New York2012
        • Jenkinson M.
        • Smith S.
        A global optimisation method for robust affine registration of brain images.
        Med. Image Anal. 2001; 5: 143-156
        • Jenkinson M.
        • Bannister P.
        • Brady M.
        • Smith S.
        Improved optimization for the robust and accurate linear registration and motion correction of brain images.
        Neuroimage. 2002; 17: 825-841
        • Huang H.
        • Nguyen P.T.
        • Schwab N.A.
        • Tanner J.J.
        • Price C.C.
        • Ding M.
        Mapping dorsal and ventral caudate in older adults: method and validation.
        Front. Aging Neurosci. 2017; 9: 91
        • Zaborszky L.
        • Hoemke L.
        • Mohlberg H.
        • Schleicher A.
        • Amunts K.
        • Zilles K.
        Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain.
        Neuroimage. 2008; 42: 1127-1141
        • Hair J.F.
        Multivariate Data Analysis.
        seventh ed. Prentice Hall, Upper Saddle River, NJ2010
        • McSweeny A.J.
        • Naugle R.I.
        • Chelune G.J.
        • Lüders H.
        T scores for change”: an illustration of a regression approach to depicting change in clinical neuropsychology.
        Clin. Neuropsychol. 1993; 7: 300-312
        • Rocha E.M.
        • De Miranda B.
        • Sanders L.H.
        Alpha-synuclein: pathology, mitochondrial dysfunction and neuroinflammation in Parkinson's disease.
        Neurobiol. Dis. 2018; 109: 249-257
        • Febo M.
        • Perez P.D.
        • Ceballos-Diaz C.
        • Colon-Perez L.M.
        • Zeng H.
        • Ofori E.
        • Golde T.E.
        • Vaillancourt D.E.
        • Chakrabarty P.
        Diffusion magnetic resonance imaging-derived free water detects neurodegenerative pattern induced by interferon-gamma.
        Brain Struct. Funct. 2020; 225: 427-439
        • Tanner J.J.
        • Amin M.
        • Hardcastle C.
        • Parvataneni H.
        • Vaillancourt D.E.
        • Mareci T.H.
        • Price C.C.
        Better brain and cognition prior to surgery is associated with elevated postoperative brain extracellular free-water in older adults.
        Front. Aging Neurosci. 2019; 11: 117
        • Surmeier D.J.
        • Obeso J.A.
        • Halliday G.M.
        Selective neuronal vulnerability in Parkinson disease.
        Nat. Rev. Neurosci. 2017; 18: 101-113
        • Chad J.A.
        • Pasternak O.
        • Salat D.H.
        • Chen J.J.
        Re-examining age-related differences in white matter microstructure with free-water corrected diffusion tensor imaging.
        Neurobiol. Aging. 2018; 71: 161-170
        • Maillard P.
        • Mitchell G.F.
        • Himali J.J.
        • Beiser A.
        • Fletcher E.
        • Tsao C.W.
        • Pase M.P.
        • Satizabal C.L.
        • Vasan R.S.
        • Seshadri S.
        • DeCarli C.
        Aortic stiffness, increased white matter free water, and altered microstructural integrity: a continuum of injury.
        Stroke. 2017; 48: 1567-1573
        • Jones J.D.
        • Tanner J.J.
        • Okun M.
        • Price C.C.
        • Bowers D.
        Are Parkinson's patients more vulnerable to the effects of cardiovascular risk: a neuroimaging and neuropsychological study.
        J. Int. Neuropsychol. Soc. 2017; 23: 322-331
        • Tanner J.J.
        • Mareci T.H.
        • Okun M.S.
        • Bowers D.
        • Libon D.J.
        • Price C.C.
        Temporal lobe and frontal-subcortical dissociations in non-demented Parkinson's disease with verbal memory impairment.
        PLoS One. 2015; 10e0133792
        • Del Tredici K.
        • Braak H.
        Review: sporadic Parkinson's disease: development and distribution of alpha-synuclein pathology.
        Neuropathol. Appl. Neurobiol. 2016; 42: 33-50
        • Ofori E.
        • DeKosky S.T.
        • Febo M.
        • Colon-Perez L.
        • Chakrabarty P.
        • Duara R.
        • Adjouadi M.
        • Golde T.E.
        • Vaillancourt D.E.
        • Alzheimer's Disease Neuroimaging I.
        Free-water imaging of the hippocampus is a sensitive marker of Alzheimer's disease.
        Neuroimage Clin. 2019; 24101985
        • Lange K.W.
        • Robbins T.W.
        • Marsden C.D.
        • James M.
        • Owen A.M.
        • Paul G.M.
        L-dopa withdrawal in Parkinson's disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction.
        Psychopharmacology (Berl). 1992; 107: 394-404